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Abstract 
This paper focuses on the tremor signal as a window to observe and analyze the 
central nervous system’s functions and organization. In this idea it is proposed a 
custom system and some methodologies that reveal the cross-modalities influences, 
specifically, the increased complexity of the neuro-motor system generating the 
tremor as a result of photic driving activation method. The correlation dimension is 
used as a measure of system’s complexity change and the behaviour of the 
physiological system is modelled using the Hindmarsh-Rose neuronal model. The 
proposed system includes: three neurons and their unidirectional coupling – 
considered to be a possible way the system changes its complexity –, the dynamical 
noise and the photic driving action. The correlation dimension (CD) analysis was 
performed on the real tremor signal and on the output signal of the modelled system. 
The global behaviour of the CD parameter proved to be similar in both cases. Thus, 
the results are promoting the idea of a complex and structured system that is 
accounting for the photing driving induced tremor. 
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1. Introduction 

In two previously papers it was investigated the dependence between the tremor signals and 
the visual stimuli [1], [2]. It was proved the existence of a direct relation between basic 
motor activity and the external visual stimuli. The observed changes in the frequency 
characteristics of the tremor signal due to visual stimuli demonstrated a significant 
connection between visual pathways in the central nervous system (CNS) and the regions 
basically governing tremor [1], [2]. In this context, given a multidimensional dynamical 
system (CNS – its efferent pathways, the motor units) and its one-dimensional output (a 
series of scalar observations represented by the tremor signal), it appeared the following 
question: can it be inferred any characteristics of the original CNS system given only its 
output? In order to answer this question, the complexity of the system was considered as a 
key feature to be analysed. 
The major theoretical contributions for complexity measurement of one system have been 

resulted so far from the tools of nonlinear dynamics and those of the information theory. 
Among these, the methods usually used to assess biological complexity were: correlation 
dimension [3-5], approximate entropy [6], detrended fluctuation analysis [7], false nearest 
neighbours [5], recurrence plot analysis [4], [8] and point wise correlation dimension [9-10]. 
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In this paper, in order to characterize the systems involved and to get an insight of the 
process of visual influence on the tremor movement, the correlation dimension was used. 
More, the system was modelled using for this the Hindmarsh-Rose neuronal model. 

2. Methodology 
There were admitted four subjects for this study, three males and one female. All subjects 
were aged between 26 and 29 years. All subjects were healthy, with no known neurological 
or endocrine pathology, and no known Ca2+ or Mg2+ deficiency that could influence the 
tremor characteristics. In addition, they had been taken no medication in the week previous 
to the recordings. The experimental protocol was explained to the subjects and they gave 
written consent regarding the participation in this study. The entire procedure of tremor 
acquisition was unobtrusive for the subjects, without any physical contact, due to the 
acquisition system capability [11]. In order to isolate them from the surrounding stray 
stimuli, other than the stimuli supplied by using a computer display, all the recordings took 
place in a quiet room without any source of light. Also, they were particularly asked to 
think at nothing. 
It has been made 20 recordings for each subject. Each recording had 98.4 s, but only the 

first 32.8 s and the last 32.8 s of hand tremor were kept. After the first time segment of 32.8 
s a visual stimuli was presented to the subject. The seating subjects were asked to maintain 
the hand in the same postural position. Moreover, the subject’s elbow was fixed in order to 
avoid the fatigue influence. In the first part of the recording, the display was a uniform 
black background. The stimuli consisted in a circle of 2 cm radius, placed in the middle of 
the display, changing its luminosity between a black background and a white flash. The 
stimuli changes’ pattern was a symmetric rectangular wave of 5Hz frequency. The subjects 
had no visual control of their hand position. The sampling rate was 250 samples per second 
and they had been 8.200 samples per each acquired segment of a recording. 

3. Correlation dimension 
Correlation dimension (CD) is a parameter able to describe the global complexity degree of 
a system based on only one of its outputs [12]. The method proposed by Grassberger and 
Procaccia [13] was used here to estimate the CD parameter. The CD’s algorithm is based 
on the computation of integral correlation, a parameter that makes no assumption regarding 
the embedding dimension. In this article, the integral correlation was computed for different 
embedding dimensions (from 1 up to 10), by using the formula: 
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where: H is the Heaviside function and M is the space dimension; xi and xj are two vectors 
constructed from the original time series by using the time delay method; R is an arbitrary 
radius and d is the distance computed by using the Takens norm. 
The CD is taken as the average slope of the cumulative curve generated by the integral 

correlation function obtained for different values of the hyper-dimensional sphere R. Both, 
the radius R and the integral correlation were plotted in log-log coordinated. When the 
embedding dimension increases the CD should increase but eventually saturate at the 
correct value. Due to the variability of the psychological influences in the time series (e.g. 
the level of subject’s concentration) and to the continuous dynamics of the CNS, this kind 
of behaviour was not confirmed in all time series. Consequently, in order to correctly 
estimate the CD parameter, the embedding dimension was computed for each time series. 
The particular value thus obtained was then used for the selection of the correct CD value. 

Connecting Medical Informatics and Bio-Informatics
R. Engelbrecht et al. (Eds.)
ENMI, 2005

466

Section 7: Imaging Informatics



Prior to this, it was established the optimal time delay parameter value needed for the state 
space reconstruction. It has been used the mutual information function [14], the optimal 
time delay value being chosen for that point where the average mutual information reached 
its first minimum. For all tremor series the time delay parameter was within the interval 
[3÷6]. In Figure 1(a) it can be observed a typical characteristic for average mutual 
information versus time lag. The mutual information reached its first minimum at a time 
delay value of 5. This value should be considered, in this particular case, the “optimal” 
value for the time delay parameter. 
 
 
 
 
 
 
 
 
 

 
Figure 1 – (a) The average mutual information (b) False nearest neighbours calculation for one 
time series with an embedding time delay of 5 (Rtol = 15) 
Having the time delay information it is possible to calculate for each one dimensional time 

tremor series the corresponding minimum embedding dimension. To calculate this last 
parameter in has been used the false nearest neighbours method [15]. Figure 1(b) presents 
one of the results obtained for a randomly chosen tremor time series. The proportion of 
false nearest neighbours drops to 0 when the correct embedding dimension is reached (6, in 
this case). For almost all time series the obtained embedding dimensions reside within the 
range from 5 to 8; only for few time series the embedding dimension was greater then 10. 
The threshold parameter for the embedding criterion (distance tolerance Rtol) was 15 for all 
determinations [15]. Finally, the CD estimations were calculated for all time series and for 
all subjects. In the pre-processing step all time series were digitally low-pass pre-filtered, 
using a cut off frequency of 40 Hz. The aberrant data series were eliminated. 

 
 
 
 
 
 
 
 
Figure 2 – The histogram distribution for CD parameter based on the time series recorded with and 

without external visual stimulus for (a) subject 1 and (b) subject 2 

In 78.3% of the recordings it was observed an increase of the CD value for the series with 
stimuli in comparison with the series recorded without any kind of stimuli. For two of the 
subjects the results are presented in Figure 2. The histogram distributions of the CD 
parameter for both types of time series (with and, respectively, without stimuli), shown in 
Figure 2, confirm through their displacement the same global trend. In both graphics the 
bins’ width was 0.275. For subject 2, Figure 2 (b), there are more bins (seven) mainly 
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because the value range of the correlation dimension for this subject was larger. For subject 
1 the bins intervals were: [2.4, 2.675), [2.675, 2.95), [2.95, 3.225), [3.225, 3.5), [3.5, 
3.775), [3.775, 4.05). For subject 2 the first bin (spanning the range [2.4, 2.675)) had zero 
elements and the added bins were [4.05, 4.325) and [4.325, 4.6), corresponding to bins 6 
and 7. 

The correlation dimensions for all time series varied between 2.82 and 4.46. As a 
consequence, the class of dynamic model that could replicate the complexity of the 
recorded time series must have at least five independent control variables to account for the 
system’s complexity. The increased complexity of the system, this could be seen as an 
effect of some underlying structural modifications (new components are added) and/or as 
an effect of some functional (coupling) changes in the system. 

4. Model simulation 
As it was shown, data sets analysis reveals that the CD parameter increases from the signals 
without stimuli to the case with stimuli. Thus, the “measure of complexity” shows that the 
visual stimulation phase modifies the physiologic system’s complexity that becomes a 
greater one. 
It is known that the control of the muscle force can be obtained: (a) by varying the number 

of recruited motor units (MU) and (b) by varying the activation rate of the motoneurons. In 
general, MUs fire asynchronously. Moreover, MUs synchrony produces tremor [16]. In our 
case it was proved [1], [2] that the synchrony was due to external/tuned synchronization that 
primarily reflects a common driving oscillation, namely the CNS oscillations. The origins 
for these driving oscillations are still unknown. They could be cortical – even if there is no 
evidence of sensorimotor induced visual stimuli frequency (this was proved only for 
primary visual cortical area [17]) –, and/or subcortical (e.g. thalamus, brainstem etc.). Also, 
from the experimental data there is no evidence for “pure” sensory pathways (dashed line in 
Figure 3a). 

 
 
 
 
  
 
 
 
 

 
 

Figure 3 – (a) Sensory processing pathways (b) The proposed model 

In [18] it can be found a review on the evidence that many of the afferent sensory inputs 
reaching the thalamus and then passed on to the cerebral cortex come from axons that 
branch, sending one branch to the thalamus (namely, to the “first-order” thalamic relays) 
and the other directly to centres in the brain stem or spinal cord (motor outputs), see Figure 
3(a). This pattern is also true for the axons that arise in the layer five of the cortex and pass 
to “higher-order” thalamic relays (HO). The axons that give off branches to lower motor 
centres and also innervate the thalamus are crucial for an immediate and completely 
different behavioural role (e.g. the fast motor actions needed for animal’s survival). In 
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terms of complexity this means that the system complexity primes the organism for an 
adaptive response, making it ready and able to react to sudden physiologic stresses. 

Under repetitive visual stimuli the system’s complexity can increase at the CNS level as a 
result of a change in the coupling strength between structural components 
(cortical/subcortical centre/visual path and, on the other hand, spinal motoneurons) and by 
recruiting new spinal motoneurons. In order to test these hypotheses a very simple model of 
the visual influence was proposed and analysed. The proposed system was designed with 3 
neurons, all of Hindmarsh-Rose (HR) neuron model type [Figure 3(b)][19]. The HR model, 
eq. (2), is one with minimal complexity (i.e., three variables only), replicating the main 
dynamical regimes of regular spiking and chaotic spiking-bursting activity observed in 
living neurons. One neuron (N1) mimics the central pattern generator; the other two 
neurons (N2, N3) model two distinct MUs. 
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The x variable represents the membrane potential, y is a recovery variable, z is the internal 
mechanism which regulates the patterns of discharges, ξ represents the background 
Gaussian white noise (synaptic, dendritic, axonic noise etc.) that is important in the 
stochastic resonance phenomena (its absolute value ≤ 1.5) and ε is the coupling strength 
parameter, (i= 1..3, j=1). The I0 parameter denotes the intensity of a constant (tonic) signal 
that is delivered to the neuron from the external world and its values were chosen as: 14 for 
N1 and 20 for N2 and N3. Further, we implemented the following four cases: (1) No 
coupling, ε1 = ε2 = ε3 = 0; (2) Light coupling, ε1 = 0, ε2 = ε3 = 0.005; (3) Strong coupling, 
ε1 = 0, ε2 = 0.5, ε3 = 0.4; (4) Strong coupling + a forcing term, I1cos(ωt), as input for N1 
neuron, ε1 = 0, ε2 = 0.5, ε3 = 0.4, I1 = 22, ω = 5. On successive trials the noise components 
and the initial state variables were varied for all three neurons, the other parameters of the 
model being maintained constants. For all cases, there were generated the signals as a sum 
of N1 and N2 outputs, cut out the first samples corresponding to the transition phase and 
then, it was applied to them the same CD analysis that was applied to the original tremor 
data set. The results are summarized in Table1. 

Tabel 1: Estimations of the correlation dimension parameter for N1+ N2 outputs 
 Case 1 Case 2 Case 3 Case 4 

N1+ N2 3.1954±0.3988 3.13505±0.2917 3.3765±0.2688 3.4402±0.2210 

5. Conclusions and further direction 
The global complexity of the system increases, fact that is revealed by the tremor signals 
recorded during a photic driving process. This confirms the emerging coupling strength that 
appears in the moment of stimuli presentation between the visual CNS pathways and the 
motor centres generating tremor. With a very simple formal model it has been replicated 
this behaviour by coupling a HR neuron, modelling the visual CNS input origin, with two 
other HR neurons that are modelling two independent motor units. The greatest 
enhancement was observed in case 4, where a new dynamic variable, I1cos(ωt), was 
introduced. The periodic driving force models the visual repetitive stimuli, also retrieved 
from the N1+ N2 outputs’ spectra. The mean growth in the complexity parameter obtained 
within the model was 0.3052. This represents the difference between strong couplings with 
driving force and light coupling without any external force. This value is similar with the 

Connecting Medical Informatics and Bio-Informatics
R. Engelbrecht et al. (Eds.)
ENMI, 2005

469

Section 7: Imaging Informatics



value obtained for real tremor signals, 0.3717 for subject 1 and 0.5584 for subject 2. This 
fact shows that, although the proposed model is a very simple one, it still succeeds to 
capture the main dynamics of the real system. The small increase of only 0.0637 obtained 
in case 4 compared to case 3 is due to only one new independent dynamic variable 
I1cos(ωt) introduced at N1’s input. The increase of 0.2415 obtained in case 3 compared to 
case 2 is due to the strength of couplings. These facts can lied to the idea that the greater 
values achieved with the real data sets (0.3717 and, respectively, 0.5584) beside those 
achieved with the simulated ones (0.3052) could be explained by a more complex and 
structured system directly responsible for the photing driving induced tremor. It has to be 
stressed that these results are only preliminary ones. There is one major drawback in the 
approach: the length of the real data set is relatively small for this kind of analysis. In order 
to get sufficient data samples, as a further direction we aim to reshape the acquisition part 
of our system. Obviously, on the model proposed will be performed further improvements 
for perfection it. 
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